[1]魏永平.不同造林密度下杉木人工林的氮储量与分配格局[J].亚热带农业研究,2020,16(02):78-83.[doi:10.13321/j.cnki.subtrop.agric.res.2020.02.002]
 WEI Yongping.Nitrogen storage and distribution pattern of Cunninghamia lanceolata plantations with different afforestation densities[J].,2020,16(02):78-83.[doi:10.13321/j.cnki.subtrop.agric.res.2020.02.002]
点击复制

不同造林密度下杉木人工林的氮储量与分配格局()
分享到:

《亚热带农业研究》[ISSN:1006-6977/CN:61-1281/TN]

卷:
16
期数:
2020年02期
页码:
78-83
栏目:
出版日期:
2020-07-22

文章信息/Info

Title:
Nitrogen storage and distribution pattern of Cunninghamia lanceolata plantations with different afforestation densities
作者:
魏永平
福建省永安国有林场, 福建 永安 365000
Author(s):
WEI Yongping
Yongan National Forest Farm of Fujian, Yongan, Fujian 365000, China
关键词:
杉木造林密度氮储量分配格局
Keywords:
Cunninghamia lanceolataafforestation densitynitrogen storagedistribution pattern
分类号:
Q945.79
DOI:
10.13321/j.cnki.subtrop.agric.res.2020.02.002
摘要:
[目的] 探明杉木人工林氮储量及其分配格局与造林密度的关系。[方法] 以不同造林密度(1 800、3 000、4 500株·hm-2)杉木人工林为研究对象,探讨其乔木层地上部分、林下植被层、枯枝落叶层和根系氮储量及分配特征。[结果] 杉木人工林乔木层和枯枝落叶层氮储量随着造林密度的增大而提高,而林下植被层和根系氮储量则随造林密度的增大呈先升后降的趋势。乔木层地上部分是杉木人工林氮储量的主体,造林密度为1 800和3 000株·hm-2的杉木人工林氮储量表现为:乔木层地上部分 > 根系 > 林下植被层 > 枯枝落叶层;4 500株·hm-2林分则表现为:乔木层地上部分 > 根系 > 枯枝落叶层 > 林下植被层。氮储量在乔木层各器官以及各径级根系中的分配相对分散,没有明显的主体。造林密度对乔木层宿存叶和宿存枝氮储量分配格局具有重要影响,但对乔木层其他器官和各径级根系氮储量分配格局的影响不明显。[结论] 在一定造林密度范围内,杉木人工林乔木层地上部分和枯枝落叶层氮储量随造林密度的增大而提高,而林下植被层和根系氮储量随造林密度的增大呈先升后降的趋势。
Abstract:
[Purpose] To explore the relationship between nitrogen storage and distribution patterns of Cunninghamia lanceolata plantations and afforestation densities.[Method] The nitrogen storage and distribution characteristics of aboveground wood layer, under forest vegetation layer, litter layer, and root system each component in C.lanceolata plantations in different afforestation densities (1 800, 3 000, or 4 500 plants·hm-2) were studied.[Result] The nitrogen storage of the aboveground wood layer and litter layer of C.lanceolata plantations increased with the increase of afforestation density, while a first increased then decreased tendency were observed in forest vegetation layer and root system of C.lanceolata plantations. The aboveground wood layer was the main body of nitrogen storage of the C.lanceolata plantations. The amount of nitrogen storage in the C.lanceolata plantations with an afforestation density of 1 800 or 3 000 plants·hm-2 followed the order as:aboveground wood layer > root system > under forest vegetation layer > litter layer; while with an afforestation density of 4 500 plants·hm-2, it followed an order as:aboveground wood layer > root system > litter layer > under forest vegetation layer. The distribution of nitrogen storage was relatively scattered among different organs of the tree layer and in the roots of different diameters without any obvious main storage body. Moreover, the afforestation densities had a significant influence on the distribution patterns of nitrogen storage in dead branches and leaves of the living tree layer, but no obvious influence on the distribution pattern of stored nitrogen in other organs of the tree layer and roots of different diameters.[Conclusion] With a certain range of afforestation density, the nitrogen reserve of the aboveground wood layer and the litter layer of C.lanceolata plantation increased with the increase of afforestation density, while it showed a first rise and then decline trend with increasing afforestation density in the under forest vegetation layer and the root system.

参考文献/References:

[1] 肖英,任希.不同森林覆盖下长沙土壤氮的垂直变化及氮储量[J].中南林业科技大学学报,2013,33(6):104-107.
[2] 崔晓阳,宋金凤.原始森林土壤NH4+/NO3-生境特征与某些针叶树种的适应性[J].生态学报,2005,25(11):3082-3092.
[3] 刘冰燕,陈云明,曹扬,等.秦岭南坡东段油松人工林生态系统碳、氮储量及其分配格局[J].应用生态学报,2015,26(3):643-652.
[4] FOWLER Z K, ADAMS M B, PETERJOHN W T. Will more nitrogen enhance carbon storage in young forest stands in central Appalachia?[J]. Forest Ecology and Management, 2015,337:144-152.
[5] REICH P B, HOBBIE S E, LEE T, et al. Nitrogen limitation constrains sustainability of ecosystem response to CO2[J]. Nature, 2006,440(7086):922-925.
[6] 岳军伟,关晋宏,邓磊,等.甘肃亚高山云杉人工林生态系统碳、氮储量动态和分配格局[J].生态学报,2018,38(21):7790-7800.
[7] 朱晗,罗红艳,李勇,等.扦插密度对杉木优良无性系扦插苗生长的影响[J].亚热带农业研究,2018,14(4):236-241.
[8] 叶义全,洪凯,张家君,等.铝胁迫对杉木幼苗生长、叶片光合特性和叶绿体超微结构的影响[J].东北林业大学学报,2020,48(2):7-11,16.
[9] 国家林业局.第八次全国森林资源清查结果[J].林业资源管理,2014(1):1-2.
[10] 齐明,王海蓉,彭九生,等.杉木育种园的遗传多样性和杂种优势群的划分研究[J].南方林业科学,2018,46(6):17-21.
[11] 何贵平,齐明,程亚平,等.杉木杂交育种中亲本选配的方法研究[J].江西农业大学学报,2016,38(4):646-653.
[12] 欧阳磊,陈金慧,郑仁华,等.杉木育种群体SSR分子标记遗传多样性分析[J].南京林业大学学报(自然科学版),2014,38(1):21-26.
[13] 郭光智,段爱国,张建国.南亚热带杉木林分蓄积量生长立地与密度效应[J].林业科学研究,2019,32(4):19-25.
[14] 徐雪蕾,孙玉军,周华,等.间伐强度对杉木人工林林下植被和土壤性质的影响[J].林业科学,2019,55(3):1-12.
[15] 杨桂娟,段爱国,邓伦秀,等.不同立地条件下杉木人工林材种结构间伐效应的长期定位研究[J].安徽农业大学学报,2018,45(3):444-449.
[16] 李惠通,张芸,魏志超,等.不同发育阶段杉木人工林土壤肥力分析[J].林业科学研究,2017,30(2):322-328.
[17] 刘先,索沛蘅,杜大俊,等.连栽杉木人工林参与土壤碳氮转化过程酶活性及其与土壤理化因子的相关性[J].生态学报,2020,40(1):247-256.
[18] 贾淑娴,吴传敬,刘小飞,等.采伐剩余物的处理方式对杉木幼林土壤磷组分及其有效性的影响[J].应用生态学报,2019,30(11):3662-3670.
[19] 韩畅,宋敏,杜虎,等.广西不同林龄杉木、马尾松人工林根系生物量及碳储量特征[J].生态学报,2017,37(7):2282-2289.
[20] 刘延惠,丁访军,崔迎春,等.林地抚育对黔中地区杉木人工幼林生态系统碳储量的影响[J].北京林业大学学报,2017,39(1):27-33.
[21] 唐学君,王伟峰,罗细芳,等.不同林龄序列杉木实生林和萌芽林碳储量分配特征[J].水土保持学报,2017,31(1):127-133,139.
[22] 王红英,樊星火,华玉武,等.不同林龄序列杉木人工林生态系统碳储量变化特征[J].江苏农业科学,2017,45(21):278-280.
[23] 兰斯安,杜虎,曾馥平,等.不同林龄杉木人工林碳储量及其分配格局[J].应用生态学报,2016,27(4):1125-1134.
[24] 匡冬姣,雷丕锋.不同林龄杉木人工林细根生物量及分布特征[J].中南林业科技大学学报,2015,35(6):70-74,79.
[25] 林秀华.杉木大径材林分不同胸径单株根生物量垂直空间分布特征[J].安徽农学通报,2018,24(12):85-88.
[26] 赵云杰,田赟,王晓.典型榆树疏林碳氮储量及其分配特征[J].中国水土保持科学,2014,12(6):82-89.
[27] 王卫霞,史作民,罗达,等.我国南亚热带几种人工林生态系统碳氮储量[J].生态学报,2013,33(3):925-933.
[28] 莫德祥,吴庆标,林宁,等.桂东南柳杉人工林碳氮储量及其分配格局[J].生态学杂志,2012,31(4):794-799.
[29] 艾泽民,陈云明,曹扬.黄土丘陵区不同林龄刺槐人工林碳、氮储量及分配格局[J].应用生态学报,2014,25(2):333-341.
[30] 莫德祥.桂东南不同密度柳杉人工林生态系统生物量及碳氮格局研究[D].南宁:广西大学,2013.
[31] 费裕翀,吴庆锥,路锦,等.林下植被管理措施对杉木大径材林土壤细菌群落结构的影响[J].应用生态学报,2020,31(2):407-416.

相似文献/References:

[1]曹光球,陈爱玲,曹世江,等.不同化感型杉木无性系根际土壤微生物数量季节动态[J].亚热带农业研究,2014,(02):73.
[2]陈梦俅,田晓萍,曹光球,等.伐桩基径及高度对杉木萌芽更新的影响[J].亚热带农业研究,2015,(01):11.[doi:10.13321/j.cnki.subtrop.agric.res.2015.01.003]
[3]郑新华. 杉木第3代种子园不同家系种子质量评价[J].亚热带农业研究,2015,(02):95.[doi:10.13321/j.cnki.subtrop.agric.res.2015.02.005]
 ZHENG Xin-hua.Evaluation of different families′ seed quality in thirdgeneration seed orchard of Cunninghamia lanceolata[J].,2015,(02):95.[doi:10.13321/j.cnki.subtrop.agric.res.2015.02.005]
[4]陈孝丑,郑仁华,施季森.杉木第2代种子园双列杂交子代遗传变异及选择[J].亚热带农业研究,2015,(02):73.[doi:10.13321/j.cnki.subtrop.agric.res.2015.02.001]
 CHEN Xiao-chou,ZHENG Ren-hua,SHI Ji-sen.Genetic variations and selection of diallel progenies in the second generation of seed orchard of Chinese fir[J].,2015,(02):73.[doi:10.13321/j.cnki.subtrop.agric.res.2015.02.001]
[5]刘春华.猴欢喜与杉木人工林生物生产力的比较[J].亚热带农业研究,2006,(01):29.[doi:10.13321/j.cnki.subtrop.agric.res.2006.01.008]
 LIU Chun-hua.Comparison of biomass productivity between Sloanea sinensis plantation and Cunninghamia lanceolata plantation[J].,2006,(02):29.[doi:10.13321/j.cnki.subtrop.agric.res.2006.01.008]
[6]黄世国,林思祖.基于数据立方体技术的杉木气候产量分析[J].亚热带农业研究,2006,(03):234.[doi:10.13321/j.cnki.subtrop.agric.res.2006.03.018]
 HUANG Shi-guo,LIN Si-zu.Data cube-based Chinese fir climate productivity analysis[J].,2006,(02):234.[doi:10.13321/j.cnki.subtrop.agric.res.2006.03.018]
[7]陈柳英.大径杉木人工复层林的经营模式[J].亚热带农业研究,2007,(02):87.[doi:10.13321/j.cnki.subtrop.agric.res.2007.02.003]
 CHEN Liu-ying.Management model of multi-storied Chinese fir plantation[J].,2007,(02):87.[doi:10.13321/j.cnki.subtrop.agric.res.2007.02.003]
[8]孙祥水.间伐对楠木杉木混交林生长影响的研究[J].亚热带农业研究,2008,(03):184.[doi:10.13321/j.cnki.subtrop.agric.res.2008.03.007]
 SUN Xiang-shui.Study on the effect of thinning on the growth of mixed forest of Phoebe nanmu and Cunninghamia lanceolata[J].,2008,(02):184.[doi:10.13321/j.cnki.subtrop.agric.res.2008.03.007]
[9]熊皓波.杉木人工复层林土壤理化性质变化的初步研究[J].亚热带农业研究,2008,(04):283.[doi:10.13321/j.cnki.subtrop.agric.res.2008.04.012]
 XIONG Hao-bo.Study on variation of the properties of soil in multi-storied Chinese fir plantation[J].,2008,(02):283.[doi:10.13321/j.cnki.subtrop.agric.res.2008.04.012]
[10]苏晋伙.杉木林下南方红豆杉初期生长分析[J].亚热带农业研究,2010,(02):86.[doi:10.13321/j.cnki.subtrop.agric.res.2010.02.004]
 SU Jin-huo.Study on initial growth of Taxus wallichiana var. mairei under-forest of Chinese fir[J].,2010,(02):86.[doi:10.13321/j.cnki.subtrop.agric.res.2010.02.004]
[11]谢建文.不同造林密度下杉木人工林的生物量与分配特征[J].亚热带农业研究,2020,16(02):84.[doi:10.13321/j.cnki.subtrop.agric.res.2020.02.003]
 XIE Jianwen.Biomass and its distribution characteristics of Cunninghamia lanceolata plantations with different afforestation densities[J].,2020,16(02):84.[doi:10.13321/j.cnki.subtrop.agric.res.2020.02.003]

备注/Memo

备注/Memo:
收稿日期:2020-04-07。
基金项目:国家重点研发计划项目(2016YFD0600301)资助。
作者简介:魏永平(1967-),男,高级工程师。研究方向:森林经营。Email:mllcwyp@163.com。
更新日期/Last Update: 1900-01-01