[1]黄秋灿,施婧,张雪,等.茶树儿茶素合成酶基因DFR的表达特性[J].亚热带农业研究,2020,16(03):185-192.[doi:10.13321/j.cnki.subtrop.agric.res.2020.03.008]
 HUANG Qiucan,SHI Jing,ZHANG Xue,et al.Expression characteristics of the key gene dihydroflavonol 4-reductase (DFR) involved in catechin synthesis in tea plants[J].,2020,16(03):185-192.[doi:10.13321/j.cnki.subtrop.agric.res.2020.03.008]
点击复制

茶树儿茶素合成酶基因DFR的表达特性()
分享到:

《亚热带农业研究》[ISSN:1006-6977/CN:61-1281/TN]

卷:
16
期数:
2020年03期
页码:
185-192
栏目:
出版日期:
2020-10-15

文章信息/Info

Title:
Expression characteristics of the key gene dihydroflavonol 4-reductase (DFR) involved in catechin synthesis in tea plants
作者:
黄秋灿1 施婧1 张雪1 张媛媛1 林晓蓉1 李斌12 陈忠正12
1. 华南农业大学食品学院, 广东 广州 510642;
2. 广东省功能食品活性物重点实验室, 广东 广州 510642
Author(s):
HUANG Qiucan1 SHI Jing1 ZHANG Xue1 ZHANG Yuanyuan1 LIN Xiaorong1 LI Bin12 CHEN Zhongzheng12
1. College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China;
2. Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangzhou, Guangdong 510642, China
关键词:
儿茶素DFR实时荧光定量PCRWestern blot技术亚细胞定位
Keywords:
catechinDFRreal-time fluorescence quantitative PCRWestern blotsubcellular localization
分类号:
Q71
DOI:
10.13321/j.cnki.subtrop.agric.res.2020.03.008
摘要:
[目的] 研究茶树儿茶素积累与二氢黄酮醇4-还原酶(dihydroflavonol 4-reductase,DFR)基因表达特性的关系。[方法] 选取南昆山毛叶茶(Camellia ptilophylla Chang)和英红九号(Camellia sinensis Yinghong 9)茶树为材料,通过反转录PCR克隆茶树DFR基因,借助烟草瞬时表达技术对其表达蛋白进行亚细胞定位。经生物信息学分析,用特异性合成肽和匙孔血蓝蛋白偶联,通过免疫技术制备了该基因的特异性抗体。应用实时荧光定量PCR和Western blot技术测定DFR转录和翻译情况,并比较2种茶树中DFR基因在转录及翻译水平的差异。[结果] MY-DFR(南昆山毛叶茶DFR基因,Genbank登录号为MT875201)和YH-DFR(英红九号DFR基因,Genbank登录号为MT876617)间存在5个核苷酸碱基及相应5个编码氨基酸的差异,其表达蛋白亚细胞定位于细胞质;制备的DFR基因特异性兔源抗体效价为1:80 000;DFR基因在南昆山毛叶茶中的转录水平极显著低于英红九号,但表达蛋白量显著高于英红九号。[结论] DFR基因在2种茶树中转录水平和翻译水平的差异体现了其表达的复杂性,推测茶树体内DFR基因的表达可能受到相关调控基因的调控。
Abstract:
[Purpose] To study the relationship between the accumulation of catechins and the expression characteristics of dihydroflavonol 4-reductase (DFR) gene in tea plants. [Method] Two tea varieties, Camellia ptilophylla Chang and Camellia sinensis Yinghong 9, were selected as the materials. The DFR eneinvolved in catechin synthesis was cloned from both varieties by reverse transcription PCR (RT-PCR) and the subcellular location of DFR enzyme were determined by tobacco transient expression technique. DFR-specific antibodies were prepared by immunizing rabbits with specific synthetic peptides based on bioinformatics analysis and keyhole limpet hemacyanin modification. The transcription and translation levels of DFR expression were analyzed by fluorescence quantitative real-time PCR and Western blot, respectively. The differences in transcription and translation levels of the DFR gene in the two tea varieties were compared. [Result] The DFR genes from the two tea varieties, MY-DFR (GenBank accesison number MT875201) and YH-DFR (GenBank accesison number MT876617), differed by five nucleotides and the resulting DFR enzyme proteins differed by five amino acids. The DFR enzyme proteins were detected in the cytoplasm. Polyclonal antibody against DFR was developed with effective titer reaching 1∶80 000. The transcription level of DFR was significantly lower in C.ptilophylla Chang than that in C.sinensis Yinghong 9. However, at the translation level, C.ptilophylla Chang had significantly higher amount of DFR enzyme protein than C.sinensis Yinghong 9. [Conclusion] The differences in transcription and translation levels of the DFR gene expression between the two selected tea varieties reflect some complexity of DFR gene expression, and it is speculated that the expression of DFR gene in tea plants may be regulated by some regulatory genes.

参考文献/References:

[1] 夏涛,高丽萍.类黄酮及茶儿茶素生物合成途径及其调控研究进展[J].中国农业科学,2009,42(8):2899-2908.
[2] YOSHIDA Y, KISO M, GOTO T. Efficiency of the extraction of catechins from green tea[J]. Food Chemistry, 1999,67(4):429-433.
[3] KANG W, WANG L, JIAN Z, et al. Catechin contents in tea (Camellia sinensis) as affected by cultivar and environment and their relation to chlorophyll contents[J]. Food Chemistry, 2011,125(1):44-48.
[4] XIAO R Y, YE C X, JIE K X, et al. Simultaneous analysis of purine alkaloids and catechins in Camellia sinensis, Camellia ptilophylla and Camellia assamica var. kucha by HPLC[J]. Food Chemistry, 2007,99(3):1132-1136.
[5] TAN J F, WANG M J, TU L L, et al. The flavonoid pathway regulates the petal colors of cotton flower[J]. PLoS One, 2013,8(8):e72364.
[6] 高燕会,黄春红,朱玉球,等.植物花青素苷生物合成及调控的研究进展[J].中国生物工程杂志,2012,32(8):94-99.
[7] O’REILLY C, SHEPHERD N S, PEREIRA A, et al. Molecular cloning of the a1 locus of Zea mays using the transposable elements En and Mu1[J]. The EMBO Journal, 1985,4(4):877-882.
[8] BELD M, MARTIN C, HUITS H, et al. Flavonoid synthesis in Petuniahybrida:partial characterization of dihydroflavonol-4-reductase genes[J]. Plant Molecular Biology, 1989,13(5):491-502.
[9] SINGH K, KUMAR S, YADAV S K, et al. Characterization of dihydroflavonol 4-reductase cDNA in tea[Camellia sinensis (L.) O. Kuntze] [J]. Plant Biotechnology Reports, 2009,3(1):95-101.
[10] MARTIN C, CARPENTER R, SOMMER H, et al. Molecular analysis of instability in flower pigmentation of Antirrhinummajus, following isolation of the pallida locus by transposon tagging[J]. The EMBO Journal, 1985,4(7):1625-1630.
[11] 王新珍.茶树儿茶素在芽中积累规律及茶树F3’5’H2的功能分析[D].合肥:安徽农业大学,2016.
[12] EUNGWANICHAYAPANT P D, POPLUECHAI S. Accumulation of catechins in tea in relation to accumulation of mRNA from genes involved in catechin biosynthesis[J]. Plant Physiology and Biochemistry, 2009,47(2):94-97.
[13] RANI A, SINGH K, AHUJA P S, et al. Molecular regulation of catechins biosynthesis in tea[Camelliasinensis (L.) O. Kuntze] [J]. Gene, 2012,495(2):205-210.
[14] 马春雷,乔小燕,陈亮.茶树无色花色素还原酶基因克隆及表达分析[J].茶叶科学,2010,30(1):27-36.
[15] MAMATI G E, LIANG Y R, LU J L. Expression of basic genes involved in tea polyphenol synthesis in relation to accumulation of catechins and total tea polyphenols[J]. Journal of the Science of Food and Agriculture, 2006,86(3):459-464.
[16] 施婧,张雪,张媛媛,等.茶叶CHS基因表达特性及其与儿茶素积累的关系[J].食品工业科技,2020,41(5):101-106,112.
[17] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.茶叶中茶多酚和儿茶素类含量的检测方法:GB/T 8313-2008[S].北京:中国标准出版社,2008.
[18] GUPTA B, SENGUPTA A, SAHA J, et al. Plant abiotic stress:‘Omics’ approach[J]. Journal of Plant Biochemistry & Physiology, 2013,1(3):e108.
[19] 林影,叶茂,韩双艳,等.免疫检测技术的研究进展[J].食品与生物技术学报,2007,26(4):117-120.
[20] SONG E G, RY K H. A pepper mottle virus-based vector enables systemic expression of endoglucanase D in non-transgenic plants[J]. Archives of Virology, 2017,162(12):3717-3726.
[21] MEYER P, HEIDMANN I, FORKMANN G, et al. A new petunia flower colour generated by transformation of a mutant with a maize gene[J]. Nature, 1987,330:677-678.
[22] TANAKA Y, FUKUI Y, FUKUCHI-MIZUTANI M, et al. Molecular cloning and characterization of Rosahybrida dihydroflavonol 4-reductase gene[J]. Plant and Cell Physiology, 1995,36(6):1023-1031.
[23] WANG W L, WANG Y X, LI H, et al. Correction to:Two MYB transcription factors (CsMYB2 and CsMYB26) are involved in flavonoid biosynthesis in tea plant[Camelliasinensis (L.) O.Kuntze] [J]. BMC Plant Biology, 2019,19(1):36.
[24] ZHANG X L, QI M F, XU T, et al. Proteomics profiling of ethylene-induced tomato flower pedicel abscission[J]. Journal of Proteomics, 2015,121:67-87.
[25] 王利彬.大豆苗期干旱和高温胁迫应答机制研究及关键转录因子的筛选[D].哈尔滨:东北农业大学,2018.

备注/Memo

备注/Memo:
收稿日期:2020-07-01;改回日期:。
基金项目:国家自然科学基金项目(31770727,31270726);广东省科技计划项目(2015A030302065);现代茶叶产业技术体系专项(CARS-19);广州市科技计划项目(201607010139)。
作者简介:黄秋灿(1995-),男,硕士研究生。研究方向:食品加工与安全。Email:814329083@qq.com。
通讯作者:陈忠正(1974-),男,副教授,博士。研究方向:食品科学及食品生物技术。Email:zhongzhengch@scau.edu.cn。
通讯作者:陈忠正(1974-),男,副教授,博士。研究方向:食品科学及食品生物技术。Email:zhongzhengch@scau.edu.cn。
更新日期/Last Update: 1900-01-01