[1]王燕芳,宋时奎.藜麦愈伤组织诱导和分化条件初探[J].亚热带农业研究,2021,17(02):115-121.[doi:10.13321/j.cnki.subtrop.agric.res.2021.02.008]
 WANG Yanfang,SONG Shikui.Preliminary study on callus induction and redifferentiation of Chenopodium quinoa[J].,2021,17(02):115-121.[doi:10.13321/j.cnki.subtrop.agric.res.2021.02.008]
点击复制

藜麦愈伤组织诱导和分化条件初探()
分享到:

《亚热带农业研究》[ISSN:1006-6977/CN:61-1281/TN]

卷:
17
期数:
2021年02期
页码:
115-121
栏目:
出版日期:
2021-07-26

文章信息/Info

Title:
Preliminary study on callus induction and redifferentiation of Chenopodium quinoa
作者:
王燕芳1 宋时奎2
1. 福建农林大学园艺学院;
2. 福建农林大学园艺植物生物学及代谢组学研究中心, 福建 福州 350002
Author(s):
WANG Yanfang1 SONG Shikui2
1. College of Horticulture;
2. Center for Horticultural Plant Biology and Metabolomic, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
关键词:
藜麦愈伤组织诱导分化
Keywords:
Chenopodium quinoacallusinductionredifferentiation
分类号:
S519Q943.1
DOI:
10.13321/j.cnki.subtrop.agric.res.2021.02.008
摘要:
[目的] 探索藜麦愈伤组织诱导和分化条件,为建立其遗传转化体系提供参考。[方法] 以下胚轴为外植体进行根癌农杆菌侵染,在诱导阶段分别比较品种、光照、培养基碳源和外源基因对藜麦愈伤组织诱导的影响;在分化阶段分别比较培养基中KNO3和6-BA浓度对愈伤组织分化的影响。[结果] 从18个藜麦品种中筛选出9个较易诱导出愈伤组织的品种;光照较黑暗有利于诱导愈伤组织;以(20 g麦芽糖+10 g葡萄糖)为碳源时,愈伤组织形态最好;愈伤组织过表达SERK基因时,生长较快,体积较大。愈伤组织在含3 800 mg·L-1 KNO3、不含6-BA或1.00 mg·L-1 6-BA的再生培养基中形态不佳,难以分化。[结论] 品种、光照、碳源、外源基因均影响藜麦愈伤组织诱导,KNO3、6-BA浓度过高不利于其愈伤组织分化。
Abstract:
[Purpose] To explore the conditions of callus induction and redifferentiation, and to provide guiding information for the establishment of stable transformation system in quinoa(Chenopodium quinoa).[Method] The hypocotyl explants of different cultivars of quinoa were infected with Agrobacterium tumefaciens, and then the callus were induced under different lighting conditions, carbon sources and exogenous genes. The concentrations of KNO3 and 6-BA were also explored for callus redifferentiation.[Result] A total of 9 quinoa cultivars which were easier to be induced into callus were screened out from 18 cultivars. The optimal carbon source was comprised of 20 g maltose and 10 g glucose, and lighting was more conductive to callus induction than darkness. Callus developed faster when the SERK gene was overexpressed, and grew bigger than the others. In regeneration medium comprising 3 800 mg·L-1 KNO3 and 1 mg·L-1 6-BA or without 6-BA, callus was poorly shaped and failed to redifferentiate.[Conclusion] Cultivar, light, carbon source and exogenous gene had different effects on callus induction in quinoa, and high concentration of KNO3 and 6-BA impaired callus redifferentiation.

参考文献/References:

[1] WILSON H D. Quinua and relatives (Chenopodium sect. Chenopodium subsect. Celluloid)[J]. Economic Botany, 1990,44(3):92.
[2] JACOBSEN S E, MUJICA A, JENSEN C R. The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors[J]. Food Reviews International, 2003,19(1/2):99-109.
[3] ORSINI F, ACCORSI M, GIANQUINTO G, et al. Beyond the ionic and osmotic response to salinity in Chenopodium quinoa:functional elements of successful halophytism[J]. Functional Plant Biology, 2011,38(10):818-831.
[4] HARIADI Y, MARANDON K, TIAN Y, et al. Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels[J]. Journal of Experimental Botany, 2011,62(1):185-193.
[5] RUIZ K B, BIONDI S, MARTíNEZ E A, et al. Quinoa-a model crop for understanding salt-tolerance mechanisms in halophytes[J]. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 2016,150(2):357-371.
[6] RUIZ K B, BIONDI S, OSES R, et al. Quinoa biodiversity and sustainability for food security under climate change:a review[J]. Agronomy for Sustainable Development, 2014,34(2):349-359.
[7] ADOLF V I, SHABALA S, ANDERSEN M N, et al. Varietal differences of quinoa’s tolerance to saline conditions[J]. Plant and Soil, 2012,357(1/2):117-129.
[8] PARKJ R, MCFARLANE I, PHIPPS R H, et al. The role of transgenic crops in sustainable development[J]. Plant Biotechnology Journal, 2011,9(1):2-21.
[9] VAIN P. Thirty years of plant transformation technology development[J]. Plant Biotechnology Journal, 2007,5(2):221-229.
[10] EISA S, KOYRO H W, KOGEL K H, et al. Induction of somatic embryogenesis in cultured cells of Chenopodium quinoa[J]. Plant Cell, Tissue and Organ Culture, 2005,81(2):243-246.
[11] HESAMI M, DANESHVAR M H. Development of a regeneration protocol through indirect organogenesis in Chenopodium quinoa Willd[J]. Scientia Horticulture, 2011,128(3):25-32.
[12] 曹宁,高旭,丁延庆,等.藜麦组织培养快速繁殖体系建立研究[J].种子,2018,37(10):110-112,115.
[13] 段鹏慧,李小艳,焦茹,等.藜麦茎段组培快繁体系的建立[J].山西农业科学,2020,48(8):1202-1206.
[14] GALLOIS J L, NORA F R, MIZUKAMI Y, et al. WUSCHEL induces shoot stem cell activity and developmental plasticity in the root meristem[J]. Genes & Development, 2004,18(4):375-380.
[15] SOLíS-RAMOS L Y, GONZáLEZ-ESTRADA T, NAHUATH-DZIB S, et al. Overexpression of WUSCHEL in C.chinense causes ectopic morphogenesis[J]. Plant Cell, Tissue and Organ Culture, 2009,96(3):279-287.
[16] LOWE K, WU E, WANG N, et al. Morphogenic regulators Baby boom and Wuschel improve monocot transformation[J]. The Plant Cell, 2016,28(9):1998-2015.
[17] 孙阳,李欣,胡超越.不同温光条件对海岛棉愈伤组织诱导的影响[J].塔里木大学学报,2020,32(4):17-23.
[18] SCHMIDT E D, GUZZO F, TOONEN M A, et al. A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos[J]. Development, 1997,124(10):2049-2062.
[19] 王娟,高文远,尹双双,等.药用植物细胞悬浮培养的研究进展[J].中国中药杂志,2012,37(24):3680-3683.
[20] 陈永勤,朱蔚华,吴蕴祺,等.组培条件对云南红豆杉愈伤组织生长和形成紫杉醇的影响[J].中国中药杂志,2000,25(5):269-272.
[21] 丁世萍,严菊强,季道藩.糖类在植物组织培养中的效应[J].植物学通报,1998,15(6):42-46.
[22] 李占岐,刘大军.不同培养条件对湘棉-18茎尖培养效果的影响[J].安徽农学通报,2007,14(16):25-27.
[23] 张志勇,李晚忱,付凤玲.转基因玉米抗性愈伤再生植株的影响因素研究[J].核农学报,2015,29(4):637-642.
[24] HE Z Q, FU Y P, SI H M, et al. Phosphomannose-isomerase (pmi) gene as a selectable marker for rice transformation via Agrobacterium[J]. Plant Science, 2004,166(1):17-22.
[25] 李琳.不同培养条件对半枝莲愈伤组织诱导及其总黄酮积累的影响[D].南京:南京师范大学,2015.
[26] 周丽容.农杆菌介导转Bt基因海岛棉技术体系的建立及抗虫性鉴定[D].乌鲁木齐:新疆农业大学,2011.
[27] 胡彦,赵艳.植物组织培养技术的应用以及在培养过程中存在的问题[J].陕西师范大学学报(自然科学版),2004,32(S1):130-134.

相似文献/References:

[1]刘杰俊,郑君强,罗筱玉,等.早熟桃胚愈伤组织的诱导与保持[J].亚热带农业研究,2005,(04):21.[doi:10.13321/j.cnki.subtrop.agric.res.2005.04.006]
 LIU Jie-jun,ZHENG Jun-qiang,LUO Xiao-yu,et al.Induction and maintenance of the calli for the embryos of the early peach[J].,2005,(02):21.[doi:10.13321/j.cnki.subtrop.agric.res.2005.04.006]
[2]刘杰俊,陈露薇,黄伟明,等.油木奈成熟胚愈伤组织的诱导与保持[J].亚热带农业研究,2006,(01):12.[doi:10.13321/j.cnki.subtrop.agric.res.2006.01.004]
 LIU Jie-jun,CHEN Lu-wei,HUANG Wei-ming,et al.Induction and maintenance of the calli for the mature embryos of younai[J].,2006,(02):12.[doi:10.13321/j.cnki.subtrop.agric.res.2006.01.004]
[3]高宇琼,赖钟雄.金花茶体胚和叶片愈伤组织培养[J].亚热带农业研究,2010,(02):130.[doi:10.13321/j.cnki.subtrop.agric.res.2010.02.014]
 GAO Yu-qiong,LAI Zhong-xiong.A study on callus culture from somatic embryos and leaves in Camellia nitidissima Chi.[J].,2010,(02):130.[doi:10.13321/j.cnki.subtrop.agric.res.2010.02.014]
[4]傅华英.鱼腥草愈伤组织的诱导技术[J].亚热带农业研究,2010,(04):225.[doi:10.13321/j.cnki.subtrop.agric.res.2010.04.003]
 FU Hua-ying.Callus induction technology of Houttuynia cordata Thunb.[J].,2010,(02):225.[doi:10.13321/j.cnki.subtrop.agric.res.2010.04.003]
[5]赖恭梯,刘海林,郭梽超,等.茅膏菜试管苗不同增殖方式研究[J].亚热带农业研究,2011,(01):57.[doi:10.13321/j.cnki.subtrop.agric.res.2011.01.014]
 LAI Gong-ti,LIU Hai-lin,GUO Zhi-chao,et al.Study on proliferation in different ways of Drosera spatulata[J].,2011,(02):57.[doi:10.13321/j.cnki.subtrop.agric.res.2011.01.014]

备注/Memo

备注/Memo:
收稿日期:2021-03-15。
基金项目:国家自然科学基金项目(31422008)。
作者简介:王燕芳(1995-),女,硕士。研究方向:植物遗传转化。Email:177581362@qq.com。
通讯作者:宋时奎(1970-),男,副教授,博士,硕士生导师。研究方向:分子育种。Email:shikui_@163.com。
更新日期/Last Update: 1900-01-01